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15.2 Time Series Analyses – Spectral & (Non-Linear) Dynamical 
Analysis

Almost all of the methods considered thus far use a statistical framework for modelling and 

characterising data and processes. This Chapter introduces TSA from a spectral analysis 

and (non-linear) dynamics perspective.  These TSA methods are in sharp contrast to the 

statistical TSA methods of Section 15.1 in that they aim to model the “underlying” or

“inner” specific driving processes, rather than modelling the “outside” or “statistical 

characteristic” of the process. 

Almost exclusively these methods focus on processes or data properties that have exact or

“near” periodic features. Purely random processes are not amenable to the methods in this 

Section.   However, and this is important, these methods can determine whether a process is

random or merely “looks random”. 

Thus, much of the discussion here relate to methods that characterise process as

determinisitc, or at least only partially random. The non-random components are then 

subjected to further analysis to decide if they are exactly periodic or “aperiodic”. 

Exactly periodic methods may be analysed and modelled with classical spectral analysis, 

such as (Fast) Fourier Transforms (FFT’s).  

Aperiodic process may be analysis and modelled (to some extent) with methods from Non-

Linear Dynamics (NLD).  It is important to emphasise that even when NLD methods are

exactly applicable, the results can be extremely sensitive to data accuracy, and so a 

“perfect” model may produce unreliable forecasts simply due to extreme dependence on

round-off errors or other approximations.  Nevertheless, they do offer the very attractive 

possibility of identifying and modelling processes that appear to be random, but have (at

least some) structure “buried” in the data. 

As such, the key issues and derivations are: 

Identifying structure in Random ”looking” data, or equivalently, when is random 

“looking” data not actually random. 

How to identify periodic vs. aperiodic datasets.

Modelling (exactly) periodic process (e.g. FFT’s) 

Modelling aperiodic process (e.g. fractals, chaos, etc)

Predictability vs. accuracy becomes and issue due to extreme sensitivity of the 

models to input data accuracy.
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After all that, there is the practical question of how and where these results may be used in 

trading and risk management.  As with Chapters 12 - 14, there is the possibility of applying 

these results to any of all of:

Creation of outright forecasting models (e.g. drift + uncertainty + NLD adjustment). 

Derivation of “risk neutral” and arbitrage free machinery for the valuation and

position keeping of securities and derivatives under “quasi” uncertainty. 

Simulation of positions or portfolios with full market modelling and trading

strategies for the assessment of risk-adjusted holding period P&L (i.e. PaR). 

15.2.1 When is a price history “truly” random, and when is it 
predictable? 

Figure 15.2 - 1 a) – d) shows four “price histories”.  What can be said about the 

predictability of such time series purely by inspection? Can you tell if any of them are: 

a) Real (market data) vs. formula/synthetically generated? 

b) Purely Random?

c) Exactly Predictable?

The answers are provided further below. 
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15.2.2 Real vs. Synthetic and Random vs. Predictable Data 

For now begin with the notion that there are only two possibilities:  a purely random price 

process, and an exactly predictable price process
173

.  Then, consider the question: is it 

possible to have an exactly predictable price process that “looks” like a random process?  If 

the answer is yes, then check all random looking processes to see if they are predictable.

Figure 15.2 - 1 a) and b) illustrates two price histories which on “first inspection” look as if 

they could have been extracted from actual price data. In fact, they are both “synthetically

generated” price histories.  Figure 15.2 - 1 c) and d) are real price histories (CAD/USD and 

S&P500). However, is “just eyeballing” these charts is not sufficient to reveal if they are 

real, or indeed if they are predictable or random? 

It may be surprising to discover that Figure 15.2 - 1 a) is “exactly predictable”, while

Figure 15.2 - 1 b) is “purely random”
174

.  Thus, if Figure 15.2 - 1 a) represented a real

market, then it would be possible to predict with (near) certainty “the forward price”.  If, 

however, the market followed Figure 15.2 - 1 b), then predicting tomorrow’s price would 

be no easier than predicting the next role of the dice. 

The series shown in Figure 15.2 - 1 a) was generated by a well known (deterministic)

equation called the Logistic Equation
175

:

1 4 1i i iP P P         (15.15) 

where  is a constant, and Pi is the “current price” while Pi+1 is a forward price.

This is a very famous equation in the study of non-linear dynamics, for amongst other 

things, it can be used to demonstrate that a very simple deterministic expression can result 

with what otherwise appears to be a random or stochastic process, when in fact it is

predictable.  The Logistic equation will produce “random looking” series for specific 

choices of .  For example the series shown in Figure 15.2 - 1 a) was produced with  = 

0.9846.  Notably, for values of less than approx 0.83 the series will not appear random at 

all. The whys and wherefores of this (interesting) behaviour are not too complicated, but 

are deferred to [3.f]. 

173 Equivalently, these could be referred to as purely stochastic, and purely deterministic.  Later, this 

restriction is relaxed to consider “partially” predictable cases. 
174 Technically, the data in Figure 15.2 - 1 a) is only exactly predictable if there is “absolute precision” (e.g. 

no round-off errors etc), and 1 b) is, strictly speaking, only “pseudo” random.   
175 The “sample” equation used here could have been one of a very large number of equations with the 

property that the generated “history” is random looking.  Some of those equations do a much better job of 

replicating the market process, but are more complex than is necessary for the present illustrative purposes. 


